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Natural convection and flow circulation within a cavity has received significant attention in recent times.
The wide range of applicability of flow inside a cavity (food processing industries, molten metal indus-
tries, etc.) requires thorough understanding for cost efficient processes. This paper is based on compre-
hensive analysis of heat flow pattern using Bejan’s heatline concept. The key parameters for our study
are the Prandtl number, Rayleigh number and Nusselt number. The values of Prandtl number (0.015,
0.026, 0.7 and 1000) have been chosen based on wide range of applicability. The Rayleigh number has
been varied from 102 to 105. Interesting results were obtained. For low Rayleigh number, it is found that
the heatlines are smooth and perfectly normal to the isotherms indicating the dominance of conduction.
But as Ra increases, flow slowly becomes convection dominant. It is also observed that multiple second-
ary circulations are formed for fluids with low Pr whereas these features are absent in higher Pr fluids.
Multiple circulation cells for smaller Pr also correspond multiple cells of heatlines which illustrate less
thermal transport from hot wall. On the other hand, the dense heatlines at bottom wall display enhanced
heat transport for larger Pr. Further, local heat transfer (Nul,Nut) are explained based on heatlines. The
comprehensive analysis is concluded with the average Nusselt number plots. A correlation for average
heat transfer rate and Ra has been developed and the range of Rayleigh number is also found, to depict
the conduction dominant heat transfer.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The relevance of buoyancy induced circulations causing trans-
port of heat and mass is significant in various physical systems.
Especially, the applicability of natural convection inside triangular
enclosure, in wide range of engineering processes from energy re-
lated to geophysical and material processing industry is very well
known [1–6]. In particular, convective heat transfer is widely used
in material processing industries like food industries, molten salt
application (e.g. fuel cell technology), molten metal applications,
etc. [7,8]. Various other studies involving sterilization, solidifica-
tion of food, food separation processes and other natural convec-
tion based processes have also been reported by earlier
researchers [9–13]. The analysis of flow for such systems is impor-
tant for a complete understanding of the problem. Numerical mod-
eling may be employed to understand and analyze these systems.
The advantage of numerical simulations is that the expensive
experimental costs can be reduced.

Numerical and experimental studies on natural convection in
triangular cavities have received significant attention due to vari-
ll rights reserved.

oy@iitm.ac.in (S. Roy).
ous applications. Poulikakos and Bejan [14] have carried out exten-
sive analysis on natural convection in an attic space. Holtzman
et al. [15] and Del Campo et al. [16] did numerical study of natural
convection in triangular enclosures. Later, Kent et al. [17] and Omri
et al. [18] carried out numerical study on right-angled and isosce-
les triangular cavities, respectively. Varol et al. [19] did the study of
natural convection in a triangular enclosure with flush mounted
heater on the wall. Recently, Sieres et al. [20] carried out analysis
of convection within a triangular enclosure for cavities with vari-
able aperture. A few other recent investigations on natural convec-
tion within triangular cavities for various applications have been
carried out by earlier researchers [21–26]. However, a comprehen-
sive analysis on natural convection flows in complex enclosures is
yet to appear in the literature. It is essential to study the heat
transfer characteristics in complex geometries to obtain optimal
design of the processes for improving the product quality.

Although a number of numerical investigations [17–26] has
been carried out in triangular cavities, the detailed analysis of heat
flow was poorly understood. The motivation for this work arises
from the fact that there is a lack on visualization of heat flow to
analyze the optimal thermal mixing and temperature distribution
within triangular enclosures. In view of various applications of
thermal processes, a comprehensive understanding of heat transfer
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Fig. 1. Schematic diagram of the physical system with the boundary conditions.

Nomenclature

g acceleration due to gravity (m s�2)
k thermal conductivity (W m�1 K�1)
L height of the triangular cavity (m)
N total number of nodes
Nu Nusselt number
Nu average Nusselt number
p pressure (Pa)
P dimensionless pressure
Pr Prandtl number
R residual of weak form
Ra Rayleigh number
T temperature (K)
Th temperature of hot inclined wall (K)
Tc temperature of cold top wall (K)
u x component of velocity (m s�1)
U x component of dimensionless velocity
v y component of velocity (m s�1)
V y component of dimensionless velocity
X dimensionless distance along x-coordinate
x distance along x-coordinate (m)
Y dimensionless distance along y-coordinate
y distance along y-coordinate (m)

Greek symbols
a thermal diffusivity (m2 s�1)
b volume expansion coefficient (K�1)
c penalty parameter
C boundary
h dimensionless temperature
m kinematic viscosity (m2 s�1)
q density (kg m�3)
U basis functions
w dimensionless streamfunction
P dimensionless heatfunction

Subscripts
i residual number
k node number
l left wall
r right wall
t top wall
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and flow circulations within triangular cavities is very much essen-
tial for industrial development. Current work attempts to analyze
heat transfer, correlations and energy distributions using heatline
approach.

The heatline concept was first introduced by Kimura and Bejan
[27] and Bejan [28]. Heatline is the best tool to analyze and under-
stand the heat flow in 2D convective transport processes and this
concept is similar to streamline which is important to analyze fluid
motion. Heatlines represent heatflux lines which represent the tra-
jectory of heat flow and they are normal to the isotherms for con-
ductive heat transfer. It may be noted that heatfunctions are
mathematical representations of heatlines and each heatline con-
tour corresponds to constant heatfunction. Various applications
using heatlines were studied by Bello-Ochende [29], Costa [30–
33], Mukhopadhyay et al. [34,35] and Deng and Tang [36]. Re-
cently, Dalal and Das [37] have used heatline method for the visu-
alization of flow in a complicated cavity. However, a
comprehensive analysis on heat flow during natural convection
in a triangular cavity with the heatline approach is yet to appear
in the literature.

The aim of this paper is to study the circulations and tempera-
ture distribution and to analyze the flow of heat due to natural
convection in an isosceles right angled inverted triangular enclo-
sure with an aspect ratio of 2:1, involving hot inclined walls and
cold top wall. The geometry of this enclosure with boundary con-
ditions is shown in Fig. 1. Numerical results are presented in terms
of isotherms, streamlines and heatlines along with the local and
average heat transfer rates. Galerkin finite element method with
penalty parameter has been used to solve the non-linear coupled
partial differential equations of flow and temperature fields. To
solve the Poisson equation for streamfunctions and heatfunctions,
Galerkin method is also used. It may be noted that Galerkin meth-
od has been used to evaluate heatfunction for the first time in this
work. The jump discontinuity in Dirichlet type of wall boundary
conditions for temperature at the corner points correspond to com-
putational singularities. This problem is tackled by considering the
average temperature of the two walls at the corner and keeping the
adjacent grid nodes at the respective wall temperature similar to
earlier works. We have considered Prandtl number from low to
high range (0.015–1000) for fluids of various industrial applica-
tions. Typically, Pr = 0.015 corresponds to molten metals and
Pr = 988.24 corresponds to olive oil. Non-orthogonal grid genera-
tion is done with iso-parametric mapping as given in Appendix A.

2. Governing equations and solution procedure

2.1. Momentum and energy formulation

The fluid properties are assumed to be constant except the den-
sity in the body force term which was determined according to the
Boussinesq approximation. This approximation is used in the field
of buoyancy driven flows and it is based on the fact that density in
the body force term varies linearly with temperature. Under these
assumptions, the governing equations for steady two dimensional,
laminar, incompressible flows can be written in dimensionless
form as:

oU
oX
þ oV

oY
¼ 0; ð1Þ

U
oU
oX
þ V

oU
oY
¼ � oP

oX
þ Pr

o2U

oX2 þ
o2U

oY2

 !
; ð2Þ
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U
oV
oX
þ V

oV
oY
¼ � oP

oY
þ Pr

o2V

oX2 þ
o2V

oY2

 !
þ RaPr h; ð3Þ

U
oh
oX
þ V

oh
oY
¼ o2h

oX2 þ
o2h

oY2 ; ð4Þ

where

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � Tc

Th � Tc

P ¼ pL2

qa2 ; Pr ¼ m
a
; Ra ¼ gbðTh � TcÞL3Pr

m2 : ð5Þ

In Eq. (5), X and Y are the dimensionless distances along x- and
y-coordinate, respectively, L is vertical depth of the cavity, i.e. per-
pendicular distance of the bottom corner from top horizontal wall,
U and V are the corresponding velocity components along the coor-
dinate axes, P denotes the dimensionless pressure whereas Pr and
Ra denote Prandtl number and Rayleigh numbers, respectively. No
slip conditions are assumed at all the walls and the boundary con-
ditions for the velocity components are

UðX;1Þ ¼ VðX;1Þ ¼ 0 on BC;
UðX;YÞ ¼ VðX;YÞ ¼ 0 on AC;
UðX;YÞ ¼ VðX;YÞ ¼ 0 on AB:

ð6Þ

The boundary conditions for temperature are

hðX;1Þ ¼ 0 on BC;
hðX;YÞ ¼ 1 on AC;
hðX;YÞ ¼ 1 on AB:

ð7Þ

The continuity equation (1) is used as a constraint due to mass
conservation and this constraint can be used to obtain the pressure
distribution. The momentum and energy balance equations [Eqs.
(2)–(4)] are solved using Galerkin finite element method. In order
to solve Eqs. (2) and (3), penalty finite element method has been
employed to eliminate the pressure P with a penalty parameter c
and the incompressibility criteria given by Eq. (1) via following
relationship:

P ¼ �c
oU
oX
þ oV

oY

� �
: ð8Þ

Typically c = 107 yields consistent solutions. Applying Eq. (8),
the momentum balance equations [Eqs. (2) and (3)], are reduced to

U
oU
oX
þ V

oU
oY
¼ c

o

oX
oU
oX
þ oV

oY

� �
þ Pr

o2U

oX2 þ
o2U

oY2

 !
; ð9Þ

and

U
oV
oX
þ V

oV
oY
¼ c

o

oY
oU
oX
þ oV

oY

� �
þ Pr

o2V

oX2 þ
o2V

oY2

 !
þ RaPrh: ð10Þ

The system of equations [Eqs. (9), (10) and (4)] with appropriate
boundary conditions are solved using Galerkin finite element
method as discussed in earlier references [26,38,39].
2.2. Streamfunction and heatfunction

The fluid motion is displayed using the streamfunction, w,
obtained from velocity components U and V. The relationships
between streamfunction, w and velocity components for
two-dimensional flows are

U ¼ ow
oY

and V ¼ � ow
oX

; ð11Þ

which yield a single equation
o2w

oX2 þ
o2w

oY2 ¼
oU
oY
� oV

oX
: ð12Þ

The sign convention is that, positive sign of w denotes anti-
clockwise circulation and clockwise circulation is represented by
negative sign of w. The no-slip condition is valid at all boundaries
as there is no cross flow, hence w = 0 is used for boundaries.
Streamfunctions corresponding to fluid velocities are obtained
using finite element method as discussed earlier [26,38,39].

The heat flow within the enclosure is displayed using the heat-
function (P) obtained from conductive heat fluxes � oh

oX ;� oh
oY

� �
as

well as convective heat fluxes (Uh,Vh). The heatfunction satisfies
the steady energy balance equation [Eq. (4)] [27] such that

oP
oY
¼ Uh� oh

oX
;

� oP
oX
¼ Vh� oh

oY
;

ð13Þ

which yield a single equation

o2P

oX2 þ
o2P

oY2 ¼
o

oY
ðUhÞ � o

oX
ðVhÞ: ð14Þ

The sign convention for heatfunction is as follows. The positive
sign of P denotes anti-clockwise heat flow and clockwise heat flow
is represented by negative sign of P. Heatfunctions are obtained
via finite element method similar to the procedure for evaluation
of streamfunctions.

In order to obtain an unique solution of Eq. (14), following
boundary conditions are implemented. Neumann boundary condi-
tions for P are obtained due to isothermal (hot or cold) wall based
on Eq. (13) and for isothermal (hot or cold) wall

n � rP ¼ 0: ð15Þ

The following are the Dirichlet boundary conditions:

P ¼
ffiffiffi
2
p

Nul at X ¼ 0; Y ¼ 1; ð16Þ

P ¼ 0 at X ¼ 1; Y ¼ 0; ð17Þ

and

P ¼ �
ffiffiffi
2
p

Nur at X ¼ 2; Y ¼ 1: ð18Þ

It may be noted that, Nul and Nur are average Nusselt numbers
at the left and right walls, respectively. The details on evaluation of
Nusselt numbers are discussed next.

The heat transfer coefficient in terms of local Nusselt number
(Nu) is defined by

Nu ¼ � oh
on
: ð19Þ

Here n denotes the normal direction of the plane. The local Nus-
selt numbers at top wall(Nut), left wall(Nul) and right wall(Nur) are
defined as

Nut ¼ �
X9

i¼1

hi
oUi

oY
; ð20Þ

Nul ¼
X9

i¼1

hi
1ffiffiffi
2
p oUi

oX
þ 1ffiffiffi

2
p oUi

oY

� �
; ð21Þ

and

Nur ¼
X9

i¼1

hi �
1ffiffiffi
2
p oUi

oX
þ 1ffiffiffi

2
p oUi

oY

� �
: ð22Þ

The average Nusselt numbers at the top and side walls are

Nut ¼
R 2

0 Nut dXR 2
0 dX

¼ 1
2

Z 2

0
Nut dX ð23Þ
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and

Nul ¼ Nur ¼
1ffiffiffi
2
p

Z ffiffi
2
p

0
Nul dS: ð24Þ

Here dS denotes the elemental length along inclined sides of the
triangular cavity.

3. Results and discussion

3.1. Numerical tests

The computational domain in n–g-coordinates (see Appendix A)
consists of 20 � 20 bi-quadratic elements which correspond to
41 � 41 grid points. Note that, the computational grid in the trian-
gular domain is generated via mapping the triangular domain into
square domain in n–g-coordinate system as shown in Fig. 2 and the
procedure is outlined in Appendix A. The bi-quadratic elements
with lesser number of nodes smoothly capture the non-linear vari-
ations of the field variables which are in contrast with finite differ-
ence/finite volume solutions available in the literature [22].

In the current investigation, Gaussian quadrature based finite
element method provides the smooth solutions at the interior do-
main including the corner regions as evaluation of residuals de-
pends on the interior Gauss points and thus the effect of corner
nodes are less profound in the final solution. In general, the Nusselt
numbers for finite difference/finite volume based methods are cal-
culated at any surface using some interpolation functions which
are now avoided in the current work. The present finite element
method based approach offers special advantage on evaluation of
local Nusselt number at the left, right and top walls as the element
basis functions have been used here to evaluate the heatflux [39].
Our simulation studies on isotherm and streamline have also been
compared with earlier studies [22] and the results are in well
agreement. In this study, Prandtl number is varied from 0.015 to
1000 covering wide range of applications. Also, Rayleigh number
effects with Ra = 102–105 have been studied. Variation of Nusselt
Mapp
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Fig. 2. (a) The mapping of triangular domain to a square domain in n–g-coordinate system
system.
number with distance and Rayleigh number, and also, variation
of average Nusselt number vs. Rayleigh number have been shown
to illustrate heat transfer rates. Detailed explanation is given in
various succeeding sections.
3.2. Isotherms, streamlines and heatlines

Due to the temperature gradient imposed by hot side walls and
cold top wall and the buoyancy force, hot (lighter) fluid tends to
move near the top wall and cold (heavier) fluid tends to move to-
wards bottom. Hot fluid along the inclined walls moving towards
the top wall and cold fluid from the center of top wall tending to
move towards the bottom wall lead to two oppositely circulating
rolls in the system. It is observed that the symmetric flow and tem-
perature patterns occur for Ra = 102–105 with all representative Pr
values based on symmetric thermal boundary conditions at in-
clined side walls. Based on the physical systems, the left half of
the axis of symmetry gives clockwise circulation pattern. The sym-
metric solutions for the parameter ranges have been obtained
based on solutions of governing equations within the entire do-
main. The non-symmetric solutions even with some specific sym-
metric boundary conditions in rectangular domains were found for
some other parameter ranges [40] and the investigations on non-
symmetric solutions for the triangular domains are the subject of
future research.

Firstly, flow and thermal dynamics for Pr = 0.015 are reported
for various Rayleigh numbers (see Figs. 3–5). At low Rayleigh num-
ber (Ra = 102), the isotherms are smooth and monotonic and the
magnitude of streamlines are quite small (see Fig. 3a and b). This
shows that at small Ra, heat transfer is mostly conduction domi-
nant. The isotherms span the entire enclosure and they are sym-
metric with respect to the vertical center line.

The heatlines are constructed based on heat flux boundary con-
ditions and the corner edges of the top wall are maintained at aver-
age Nusselt number ðP ¼ NulÞ as the bottom edge is maintained at
P = 0. Therefore, the large values of P at the edges of the top wall
ing
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and (b) the mapping of an individual element to a single element in n–g-coordinate
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are mainly due to the cold wall being directly in contact with hot
inclined walls. The basis of the sign convention is that heat flows
from hot to cold wall and the positive heatfunction corresponds
to anti clockwise heat flow. Fig. 3c illustrates that the heat flow oc-
curs mainly due to the conduction as the heatlines are nearly per-
pendicular to the isotherm lines as well as the walls. An important
point to note is that the heatlines with greater strength are clus-
tered around the top portion of the inclined wall and as we move
down along the inclined wall, the strength of heatline goes to as
low as 0.04. This means that major amount of heat flux or transport
occurs near the cold wall. Thus, relatively less heat flow occurs
from the bottom edge of the enclosure. It is also illustrated that
the top cold wall receives most of the heat from the upper half
of hot inclined walls during conduction dominant heat transfer.

As Rayleigh number is increased to 104 (Fig. 4a–c), isotherms
tend to deform but they are symmetric to the vertical central line
and the deformation is due to the presence of significant convec-
tion in the system (Fig. 4a). It is also observed that the intensity
of buoyancy driven circulations inside the cavity increases as seen
from greater strength of streamfunctions. Intensity of circulations
are greater near the center and least at the wall due to no slip
boundary conditions. Secondary circulations are also developed
near the intersection of inclined walls with the cold top wall. The
heatlines illustrate that, convection dominant effect plays critical
role on larger heat to flow from the bottom portion of inclined
walls to the top wall (Fig. 4c). It is observed that the heatlines
are less dense near the top corner points where heat transport is
conduction dominant as the intensity of fluid circulation is less
as seen from streamfunctions. Although the infinite heat transfer
occurs at the top corner points, the heatlines are less dense near
those points due to absence of convection. It is interesting to ob-
serve that the heatlines are quite dense near the bottom portions
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of inclined walls and that specifies more heat transfer from the re-
gime near the bottom corner to the top cooled wall. Also, it is seen
that the shape of heatlines near the core is identical to that of
streamlines signifying the convection dominant heat flow due to
large intensity of circulations (large values of streamfunctions).
Therefore, the temperature gradients as seen from Fig. 4a are less
near the center of each half due to large heat distribution resulting
from convective heat transfer.

As Rayleigh number is increased to 105 (Fig. 5a–c), multiple and
stronger circulations appear and those result in more deformations
in the isotherms. It may be noted that the magnitude of stream-
functions are larger for Ra = 105 signifying the larger intensity of
circulations. Multiple circulations greatly influence the heatline
patterns and heat distributions as seen in Fig. 5c. Similar to previ-
ous case (Fig. 4), the top portions of the inclined hot walls do not
distribute much heat to the cold wall. Note that, the intensity of
fluid circulations is found to be much stronger near the bottom
corner for Ra = 105. This strong convection cell distributes heat
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from the bottom portion of hot walls and thus enhanced convec-
tive heat transfer occurs as seen from dense heatline contours.
Therefore, the temperature gradient is less due to enhanced ther-
mal mixing near bottom potion of the central regime. In contrast,
the heatlines were found to be less dense near the horizontal wall
where the heat transport is mainly due to conduction.

Next, the effect of change in Prandtl number has been investi-
gated. Fig. 6 illustrates distribution for Pr = 0.026 and Ra = 105. As ex-
pected the qualitative trends in flow and thermal characteristics are
identical to those in Fig. 5a–c. However, we do see that the number of
multiple circulations as illustrated by the streamlines has slightly
been decreased especially towards the corners of the top wall. The
heatlines show identical quantitatively features for Pr = 0.015 and
Pr = 0.026 (Figs. 5c and 6c). The interesting comparison may be illus-
trated as Prandtl Number is increased to 0.7 (Fig. 7c). Streamlines
illustrate that for Pr = 0.7, all the multiple circulations that were ob-
served at Pr 6 0.026, have been totally absent (Fig. 7b). The stream-
lines are now elliptical towards the center and smooth triangular
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curves near the walls. The intensity of the flow has been tremen-
dously increased. The strength of the streamfunction has been in-
creased to almost double near the center regime. The heatlines are
similar to streamlines at the core signifying convective heat flow
and a large amount of heat flow occurs from the bottom portion of
inclined wall as seen from dense heatlines.

Fig. 8a–c illustrates the profiles for large Prandtl number
(Pr = 1000) with Ra = 105. It is noteworthy to mention that Figs. 7
and 8 have almost the similar trend for isotherms, streamlines
and heatlines. The streamlines become smooth elliptical towards
the corner points of the top wall. All the multiple circulations that
were seen in previous cases (Figs. 5b and 6b) have been completely
disappeared into a single circulation with a central core. The
strength of streamfunction at the central regime is larger com-
pared to the previous cases. Identical trend in heatlines is observed
based on Figs. 5 and 6c and Figs. 7 and 8c. The absence of multiple
heat circulations in the system is observed and a very intense heat
flow occurs across the inclined walls represented by dense heatline
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for Pr = 0.7,1000. It is interesting to observe that heat transport in a
large regime at the core is due to convection. The large regime of
convection is due to the large amount of heat transport from the
inclined walls associated with large intensity of circulations (Figs.
7c and 8c). The convective heat transport has been suppressed
for lower Pr due to the presence of multiple circulations.

3.3. Heat transfer rate: Nusselt numbers

Fig. 9a shows the variation of heat transfer rate (Nur,Nul) along
the inclined wall. A wavy distribution pattern for the heat transfer
rate is observed for Pr = 0.015 and Ra = 105. The heat transfer rate
is quite small till the distance being 0.2, as this region is near the
intersection of hot walls, resulting in low heat transfer between
the fluid. Thereafter heat transfer rate steadily increases until the
distance being 0.4. The same pattern is observed again after distance
0.6 until up to 0.8. The wavy pattern occurs due to the multiple cir-
culations cells with low Prandtl numbers for Ra = 105 (see Figs. 5b
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and 6b). Each circulation cell is characterized by an intense central
core region and a less intensified outer region. As a result, the heat
transfer starts to decrease at the zone of intersection of two circula-
tion cells. The heatlines are also less dense at the zone between two
circulation cells (Fig. 5c). In contrast, the absence of wavy pattern for
Nusselt number with higher Prandtl numbers (Pr = 0.7 � 1000) is
due to absence of multiple circulations. A local maxima of Nul or
Nur occurs at the distance being 0.3 for Pr = 0.7 and 1000 and this lo-
cal maxima is attributed to the dense heatlines as seen in Figs. 7c and
8c. After distance being 1, heat transfer rate increases rapidly and at
the edge, the rate is infinite, i.e. at the point of intersection of cold and
hot walls for all ranges of Pr. The heat transport near the top corner
regimes is predominantly by conduction and thereafter there is a
sharp fall of Nul or Nur from the top corner along the inclined wall.
The sharp decrease of Nul or Nur is also attributed to the less dense
heatlines as seen in Figs. 5c, 6c, 7c and 8c.

Fig. 9b shows the variation of Nusselt number (Nut) with the
distance along the top wall. It may be noted that at X = 0 and
X = 2 the heat transfer rate is infinite at all ranges of Pr. This is ex-
pected at these points, as the hot wall intersects the cold wall
exhibiting maximum heat transfer. The heat transfer rate sharply
falls when distance is further increased from X = 0 till X = 0.3 and
heat transfer rate decreases thereafter till X = 0.6 especially for
Pr = 0.015. This is due to the multiple circulation cells for
Pr = 0.015 (see Fig. 5b). In addition, the less heat transfer rate is
due to highly dispersed heatlines, as seen in Fig. 5c. The heat trans-
fer rate remains almost constant and low till X = 1.4 for Pr = 0.015.
It is observed that, the heatlines concentrate within X 6 0.3 and
heatlines are well dispersed within 0.6 6 X 6 1.4. The qualitative
trend is nearly the same for Pr = 0.7,1000 with Ra = 105. It is impor-
tant to note that Nut is larger except at the central regime for high-
er Pr due to dense heatlines with enhanced circulation cells (Figs.
7c and 8c) whereas, the heat transfer rate (Nut) for Pr = 0.015 is
lowest at the center attributed by the less dense heatlines (Figs.
7c and 8c).

Fig. 10a and b shows the distributions of the average Nusselt
number of top and inclined walls, respectively, vs. the logarithmic
Rayleigh number. The average Nusselt number is obtained via
Simpson’s one third rule [see Eqs. (23) and (24)]. General observa-
tion is that the average Nusselt number increases with Rayleigh
numbers. Fig. 10a illustrates that the average Nusselt number re-
mains almost constant till Ra = 4 � 103 for Pr = 1000. Thereafter
the average Nusselt number for Pr = 1000 increases rapidly to
reach a very high value at Ra = 105 whereas for Pr = 0.015, the aver-
age Nusselt number does increase but rate of the increase is very
low. The smaller variation for Nut is due to secondary and multiple
circulations and heat transfer in Pr = 0.015 (see Fig. 5c) compared
to single symmetric highly intense circulation in Pr = 1000 (see
Fig. 8c). Similar pattern is observed in Fig. 10b for the inclined
walls. Based on energy balance, the average Nusselt number of
top wall is

ffiffiffi
2
p

times that of the inclined wall. This result is well
matched in all our cases verifying the energy conservation within
the system. A correlation has been developed for a generalized
relationship between Nut or Nul and Ra in a convection dominated
regime. A correlation for Nut or Nul and Ra was observed for
Pr = 0.7–1000, however, correlation could not be obtained for
Pr = 0.015 as the overall heat transfer rate is small and conduction
dominant regime is observed at higher Ra. The limit of Ra is ob-
served as 4 � 103 for Pr = 1000 and convection is found to be signif-
icant for Ra P 4 � 103 and the following correlation is obtained:

Nut ¼
ffiffiffi
2
p

Nul ¼ 1:8332Ra0:1288; Pr ¼ 1000; 4� 103
6 Ra 6 105:

ð25Þ
4. Conclusion

The objective of this paper is to understand a physical as well as
computational insight due to heat flow for natural convection within
a complex enclosure. The system considered here is an inverted tri-
angular cavity which has wide range of applicability in industries as
discussed earlier. The key controlling parameters for our analysis are
Rayleigh number and Prandtl number which govern the overall heat
transfer rate, i.e. Nusselt number. The motivation is to understand
the effect of each of these parameters on the heat flow process. In
addition, the values of Prandtl numbers (0.015,0.7,1000) have been
chosen such that the system depicts wide range of commonly used
applications. The visualization of heat flow inside any cavity is
incomplete unless we know about the heat flow and hence we have
introduced the heatlines concept in the triangular cavity, which en-
ables us to understand the heat flow trajectory. During conduction
dominant heat transfer, it is observed that the isotherms, stream-
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lines and heatlines are found to be monotonic and smooth curves.
Also, the heatlines will be perfectly normal to the isotherm during
conduction dominant heat transfer. However, as Ra increases to
104, convection is initiated, and the flow patterns get distorted with
initiation of secondary circulation cells. The strong dominance of
convection in heat transfer is clearly illustrated via large magnitudes
of streamfunctions and heatfunctions when Ra is increased to 105.
Heat transport is mainly due to convection in multiple circulation
zones and thus multiple cells in heatline contours are also observed
for Pr = 0.015 and Pr = 0.026. It is interesting to observe that multiple
circulations are suppressed for Pr P 0.7 and dense heatlines are ob-
served near the bottom portion of inclined walls. This implies that a
large amount of heat is transferred from the bottom portion of the in-
clined walls. Thus, isotherms are compressed along that regime and
uniform higher temperature is observed at the center of the bottom
of cavity due to enhanced thermal mixing based on dense heatlines.

Overall analysis of heat transfer is carried out via local and aver-
age Nusselt numbers along the inclined and top walls. It is ob-
served that the Nusselt number is quite large at the intersection
of inclined and top walls due to infinite heat transfer rate. It is ob-
served that multiple circulations cells results in a wavy pattern of
Nusselt number for low Prandtl numbers indicating fluctuating
magnitudes of heat transfer rates at various locations along the in-
clined and top wall. The wavy pattern in spatial distribution of
Nusselt number gradually disappears as Pr increases. The compre-
hensive analysis of heat transfer is further supplemented with
average Nusselt numbers for the inclined and top wall. Correlation
has been developed for Pr = 1000 to illustrate convective heat
transfer rate and the range of Ra is also found to illustrate the con-
duction dominant zone.
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Appendix A

The name iso-parametric derives from the fact that the same
parametric function describing the geometry may be used for
interpolating spatial variable within an element [38]. Fig. 2 shows
the transformation between (x,y) and (n,g) coordinates:

X ¼
X9

k¼1

Ukðn;gÞxk;

Y ¼
X9

k¼1

Ukðn;gÞyk:

Here (xk,yk) are the X-, Y-coordinates of the k nodal points as seen
in Fig. 2 and Uk(n,g) is the basis function. The nine basis functions
are:

U1 ¼ ð1� 3nþ 2n2Þð1� 3gþ 2g2Þ;
U2 ¼ ð1� 3nþ 2n2Þð4g� 4g2Þ;
U3 ¼ ð1� 3nþ 2n2Þð�gþ 2g2Þ;
U4 ¼ ð4n� 4n2Þð1� 3gþ 2g2Þ;
U5 ¼ ð4n� 4n2Þð4g� 4g2Þ;
U6 ¼ ð4n� 4n2Þð�gþ 2g2Þ;
U7 ¼ ð�nþ 2n2Þð1� 3gþ 2g2Þ;
U8 ¼ ð�nþ 2n2Þð4g� 4g2Þ;
U9 ¼ ð�nþ 2n2Þð�gþ 2g2Þ:
The above basis functions are used for mapping the triangular
domain or elements within the triangle into square domain and
the evaluation of integrals of residuals.
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